Monatshefte für Chemie 112, 149-156 (1981)

# Monatshefte für Chemie

© by Springer-Verlag 1981

# Über Erdalkalimetalloxogallate. VIII Synthese und Aufbau eines neuen Calciumoxogallats: Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub>

## Axel-Rüdiger Schulze und Hanskarl Müller-Buschbaum\*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, D-2300 Kiel, Bundesrepublik Deutschland

(Eingegangen 30. Juni 1980, Angenommen 10. Juli 1980)

Preparation and Structure of a New Calciumoxogallate: Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub>

The hitherto unknown compound  $Ca_3Ga_4O_9$  was prepared and investigated by X-ray single crystal methods.  $Ca_3Ga_4O_9$  has orthorhombic symmetry: a = 1435.8; b = 1682.5; c = 532.1 pm; space group  $C_{2v}^{11}$ —Cmm2, Z = 6. The tetrahedra network (circles of 4 and 5 GaO<sub>4</sub>-tetrahedra) and the surrounding of  $Ca^{2+}$  are described and discussed with respect to other oxogallates.

(Keywords: Calcium; Gallium; Oxygen; Single Crystal; X-Ray)

#### Einleitung

Die Kristallchemie der Erdalkalimetalloxogallate stützt sich bisher auf wenige gut untersuchte Beispiele. Eine Gruppe von Verbindungen: CaGa<sub>2</sub>O<sub>4</sub> (Lit.<sup>1–3</sup>), CaGaAlO<sub>4</sub> (Lit.<sup>4</sup>) und BaGa<sub>2</sub>O<sub>4</sub> (Lit.<sup>5–7</sup>) gehört zu den aufgefüllten Tridymitstrukturen, mit einem aus Tetraedern aufgebauten Sechsringgerüst, in dessen Tunnel die Erdalkalimetallionen eingelagert sind. CaGa<sub>4</sub>O<sub>7</sub> (Lit.<sup>8</sup>) und SrGa<sub>4</sub>O<sub>7</sub> (Lit.<sup>9</sup>) besitzen einen komplizierten Aufbau, der noch die Tetraedersechsringe erkennen läßt. Überraschend war der Aufbau von BeGa<sub>2</sub>O<sub>4</sub> (Lit.<sup>10</sup>), welches ebenfalls Tetraedersechsringe besitzt, die jedoch pro Ring von 6 Tetraedervierringen umschlossen sind. Der Aufbau von BeGa<sub>2</sub>O<sub>4</sub> läßt sich somit als Netzwerk von Vierringen beschreiben, in welches Sechsringe eingelagert sind. Als Besonderheit dieser Verbindung ist die statistische Besetzung der Sauerstofftetraeder durch Be<sup>2+</sup> und Ga<sup>3+</sup> hervorzuheben, d. h. es liegt keine dem Tridymit verwandte aufgefüllte Tunnelstruktur vor. Eine zweite Gruppe von Verbindungen sind die Tetraederkettenstrukturen, wie sie im Bautyp des Minerals Brownmillerit realisiert sind. Wird in  $Ca_2Fe_2O_5$  (Lit.<sup>11</sup>) Fe<sup>3+</sup> partiell gegen Ga<sup>3+</sup> ersetzt, so wählt Ga<sup>3+</sup> von den vorhandenen Oktaeder- und Tetraederpositionen ausschließlich die Tetraederlücken. Diese GaO<sub>4</sub>-Tetraeder bilden im Kristallverband neben FeO<sub>6</sub>-Oktaedern isolierte Ketten aus. Es gelang bisher nicht, die relativ erdalkalimetallreiche Verbindung Ca<sub>2</sub>Ga<sub>2</sub>O<sub>5</sub> zu synthetisieren.

Das Interesse innerhalb der Kristallchemie der Erdalkalioxogallate richtet sich auf die Darstellung sogenannter erdalkalimetallreicher Oxogallate einerseits und auf Gerüststrukturen mit kleinen Tetraedersechsringen, wie sie in der erwähnten Verbindung BeGa<sub>2</sub>O<sub>4</sub> beobachtet wurden.

Die hier untersuchte Verbindung  $Ca_3Ga_4O_9$  gehört gemäß ihrer Bruttoformel zu den  $M_3SE_4O_9$ -Verbindungen (M = Sr, Ba; SE = Sel-tenerdmetall)<sup>12-14</sup>. Vom kristallchemischen Aufbau schließt sie die Lücke zu erdalkalimetallreicheren Oxogallaten mit Tetraedernetzwerk, worüber im folgenden berichtet wird.

# Darstellung und röntgenographische Untersuchung von $Ca_3Ga_4O_{gr}$ Einkristallen

CaCO<sub>3</sub> und Ga<sub>2</sub>O<sub>3</sub> (3:2) werden innig vermischt und acht Tage auf 1350 °C in einem Korundschiffchen erhitzt und langsam (Zeitprogramm: 10 °C/h) auf 600 °C abgekühlt. Aus der erstarrten Schmelze können farblose Einkristalle von Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub> isoliert werden (0,2 mm Durchmesser), die einwandfreie Röntgenbeugungsmuster ergeben. Mit *Weißenberg*-, Precession- und Diffraktometermethoden (MoK<sub>α</sub>-Strahlung) wurden die Gitterkonstanten mit

$$a = 1\,435.8$$
  $b = 1\,682.5$   $c = 532.1\,\mathrm{pm}$ 

sowie die systematisch beobachtbaren Reflexe bestimmt. Die Auslöschungsbedingungen [(hkl) mit h + k = 2n; (0kl) und (0k0) mit k = 2n; (h0l) und (h00) mit h = 2n und (hk0) mit h + k = 2n] führen zu den charakteristischen Raumgruppen:  $D_{2h}^{19}$ —Cmmm,  $C_{2v}^{14}$ —Cm2m; —C2mm,  $C_{2v}^{11}$ —Cmm2 und  $D_{2}^{6}$ —C222. Mit Hilfe einer *E*-Wertstatistik des Rechenprogramms MULTAN 78 (Lit. <sup>15</sup>) ist nur für das Reflexprofil (hk0) eindeutig eine Zentrosymmetrie nachzuweisen. Damit entfallen die Raumgruppen  $C_{2v}^{14}$  und  $D_{2}^{6}$ . Im Laufe der Strukturermittlung und Parameterverfeinerung konnte ferner die höhersymmetrische Raumgruppe  $D_{2h}^{19}$  ausgeschlossen werden, so daß Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub> zur orthorhombischen Symmetrie  $C_{2v}^{11}$ —Cmm2 gehört.

Mit 1609 symmetrieunabhängigen Reflexen (Vierkreisdiffraktometer PHILIPS PW 1100) wurden Patterson-Synthesen berechnet, die

|     | Punktlage | x                    | <i>y</i>               | 2                      | <i>B</i> [Å <sup>2</sup> ]                  |
|-----|-----------|----------------------|------------------------|------------------------|---------------------------------------------|
| Ca1 | (2 a)     | 0,0                  | 0,0                    | 0,0                    | $_{(0,07)}^{0,32}$                          |
| Ca2 | (4 e)     | 0,0                  | 0,4017<br>(0,0003)     | 0,9098<br>( $0,0014$ ) | 0,74<br>(0,06)                              |
| Ca3 | (8 f)     | $0,1293 \\ (0,0002)$ | $0,2096 \\ (0,0002)$   | $0,9623 \\ (0,0014)$   | $\substack{0,40\\(0,03)}$                   |
| Ca4 | (4 d)     | 0,2399<br>(0,0003)   | 0,0                    | $0,9491 \\ (0,0015)$   | $\substack{0.62\\(0.05)}$                   |
| Ga1 | (8f)      | 0,1088<br>(0,0001)   | 0,0939<br>( $0,0001$ ) | $0,4873 \\ (0,0013)$   | $0,38 \\ (0,02)$                            |
| Ga2 | (8f)      | 0,2005<br>(0,0001)   | $0,3346 \\ (0,0001)$   | $0,4366 \\ (0,0013)$   | $0,36 \\ (0,02)$                            |
| Ga3 | (4 d)     | 0,3878<br>(0,0002)   | 0,0                    | $0,3898 \\ (0,0013)$   | 0,47<br>(0,04)                              |
| Ga4 | (4 e)     | 0,0                  | 0,2623<br>(0,0001)     | $0,4705 \\ (0,0013)$   | $0,38 \\ (0,03)$                            |
| 01  | (4 d)     | $0,391 \\ (0,001)$   | 0,0                    | $0,728 \\ (0,003)$     | $0,46 \\ (0,22)$                            |
| 02  | (4d)      | $0,104 \\ (0,001)$   | 0,0                    | $0,654 \\ (0,003)$     | $0,45 \\ (0,22)$                            |
| 03  | (8 f)     | $0,102 \\ (0,001)$   | $0,304 \\ (0,001)$     | $0,636 \\ (0,002)$     | $0,37 \\ (0,15)$                            |
| 04  | (4 e)     | 0,0                  | $0,154 \\ (0,001)$     | $0,598 \\ (0,003)$     | $0,22 \\ (0,19)$                            |
| 05  | (8 f)     | $0,294 \\ (0,001)$   | $0,361 \\ (0,001)$     | $0,657 \\ (0,003)$     | $\substack{0,64\\(0,16)}$                   |
| 06  | (2 b)     | 0,0                  | 0,500                  | $0,226 \\ (0,005)$     | $\substack{0,49\\(0,31)}$                   |
| 07  | (8f)      | $0,115 \\ (0,001)$   | $0,089 \\ (0,001)$     | $0,150 \\ (0,003)$     | $0,66 \\ (0,16)$                            |
| 08  | (4 e)     | 0,0                  | $0,272 \\ (0,001)$     | $0,133 \\ (0,004)$     | $\substack{\textbf{0,71}\\(\textbf{0,24})}$ |
| 09  | (8 f)     | $0,169 \\ (0,001)$   | $0,415 \\ (0,001)$     | $0,227 \\ (0,003)$     | $0,55 \\ (0,15)$                            |
| 010 | (4 c)     | 0,250                | 0,250                  | 0,243<br>(0,003)       | $0,44 \\ (0,21)$                            |

zu den Positionen der stark streuenden Ca<sup>2+</sup>- und Ga<sup>3+</sup>-Teilchen führten. In Verbindung mit *Fourier*-Synthesen wurden die fehlenden O<sup>2-</sup>-Positionen bestimmt und mit der Methode der kleinsten Fehlerquadrate verfeinert [SHELX 76 (Lit.<sup>16</sup>)]. Jede Elementarzelle enthält sechs Formeleinheiten Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub>. Tabelle 1 gibt die endgültigen Lageparameter wieder. Der Gütefaktor über alle Reflexe beträgt  $R_{(hkl)} =$ 0,084, für 1217 Reflexe mit  $F_0 \geq 6$  ° $F_0$  ergibt sich ein Gütefaktor von

| Τa | belle | 2. | Interatomare | Abstände | [pm] | für | Ca <sub>3</sub> Ga <sub>4</sub> ( | ), |
|----|-------|----|--------------|----------|------|-----|-----------------------------------|----|
|----|-------|----|--------------|----------|------|-----|-----------------------------------|----|

| Ca <sub>1</sub> :                         |                       | Ga <sub>1</sub> :                  |                   |
|-------------------------------------------|-----------------------|------------------------------------|-------------------|
| $O_{II}$ :                                | $237,2(2 \times)$     | .O <sub>11</sub> :                 | 181,3             |
| $0_{\rm VII}$ :                           | $237,0(4 \times)$     | $O_{IV}$ :                         | 194.7             |
|                                           |                       | $O_{\mathbf{v}}$ :                 | 182.8             |
| Ca <sub>11</sub> :                        |                       | $O_{VII}$ :                        | 179.5             |
| $0_1$                                     | $247,7(2 \times)$     | v 11                               | ,-                |
| $0_{11}$ :                                | $263.9(2 \times )$    | Gan:                               |                   |
| $0_{VI}$ :                                | 235,9                 | 0111:                              | 184.6             |
| $0_{\rm VIII}$ :                          | 248.1                 | $O_{v}$                            | 183.3             |
| $0_{1x}$                                  | $296.8(2 \times )$    | O <sub>IV</sub> :                  | 180.3             |
| 124                                       | <i>y</i> - ( <i>y</i> | $0_{\mathbf{x}}$ :                 | 189.6             |
| Cam:                                      |                       |                                    | ,-                |
| 0 m <sup>2</sup>                          | 238.4                 | Gam:                               |                   |
| $O_{1V}^{m}$ :                            | 284.7                 | $O_{\mathbf{I}}$                   | 180.1             |
| $O_{\mathbf{v}}^{\mathbf{i}\mathbf{v}}$ : | 229.6                 | $O_{VI}$ :                         | 183.3             |
| $O_{VII}$ :                               | 225.8                 | $O_{\mathbf{IV}}$ :                | $186.6(2 \times)$ |
| Ovin:                                     | 232.1                 | · 1A ·                             | 100,0 (1)         |
| $0\mathbf{v}$ :                           | 238.5                 | Gary:                              |                   |
| Α                                         |                       | Ощ;                                | $184.3(2 \times)$ |
| Canv:                                     |                       | $\hat{\mathbf{O}}_{\mathbf{IV}}$ : | 194:8             |
| $O_{\tau}$                                | 246.3                 | Oviti:                             | 180.2             |
| О́л:                                      | 250.3                 | ° v 111 .                          | 100,1             |
| $O_{v}^{n}$ :                             | $285.2(2 \times )$    |                                    |                   |
| $0_{\rm VII}$ :                           | $259.0(2 \times)$     |                                    |                   |
| $O_{\mathbf{I}\mathbf{X}}$                | $244.2(2 \times )$    |                                    |                   |
| 177                                       | / \` /                |                                    |                   |

R = 0.062, bei isotroper Verfeinerung der Temperaturfaktoren ohne weitere Korrekturen. Tabelle 2 enthält die wichtigsten Metall—Sauerstoff-Abstände. Die Liste der beobachteten und berechneten Strukturfaktoren wird an anderer Stelle veröffentlicht<sup>17</sup>.

## Beschreibung der Kristallstruktur und Diskussion

Die röntgenographische Untersuchung an Einkristallen von  $Ca_3Ga_4O_9$  zeigt unerwartete Polyederverknüpfungen, die die Kristallchemie der Oxogallate erweitern. Zunächst sei das  $GaO_4$ -Tetraedergerüst beschrieben. Abb. 1 gibt in projektiver Darstellung die Ver-



Abb. 1. Projektive Darstellung der Tetraederverknüpfung in  $Ca_3Ga_4O_9$ . Die in die Lücken eingelagerten  $Ca^{2+}$ -Ionen sind durch Sechsecke gekennzeichnet



Abb.2. Perspektivische Darstellung des Tetraedergerüsts der Verbindung Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub> (unter Verwendung des Plotterprogramms<sup>18</sup>). *a* Tetraeder vom Mittelpunkt der Ga<sup>3+</sup>-Ionen ausgehend. *b* Tetraeder als Umrisse

knüpfung dieser Tetraeder zu Ringen wieder. Es sind in dieser unverzerrten Darstellung deutliche Tetraederfünfringe und Tetraedervierringe zu erkennen, die jeweils zu Gruppen zusammengefaßt sind. Eine perspektivische Darstellung ohne die eingelagerten Ca<sup>2+</sup>-Ionen gibt



Abb. 3. Koordinationspolyeder um  $Ca^{2+}$ . Die in die Symbole eingeschriebenen Zahlen beziehen sich auf die Reihenfolge  $Ca_{I}$ — $Ca_{IV}$  bzw.  $O_{I}$ — $O_{X}$  der Parametertabelle. Die Abstände sind in pm angegeben

Abb. 2 wieder. Speziell Abb. 2b ist zu entnehmen, daß die beschriebenen Tetraederringe nicht planar, sondern in sich und auch untereinander stark verdreht sind. Bemerkenswert ist nun, daß hier die Ähnlichkeit zu den auch aus Tetraederringen aufgebauten Verbindungen CaGa<sub>2</sub>O<sub>4</sub>, BaGa<sub>2</sub>O<sub>4</sub> und BeGa<sub>2</sub>O<sub>4</sub> endet, da in der dritten Dimension keine Verknüpfung zwischen den Tetraedern besteht. Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub> ist somit nur ein zweidimensionales Tetraedergerüst, welches längs [001] durch die Calciumionen zusammengehalten wird. Die in der Projektion (Abb. 1) gut erkennbaren Hohlräume bestehen somit aus Lücken im Tetraedernetzwerk mit unterschiedlicher Größe und unterschiedlicher Koordination für Ca<sup>2+</sup>. Die in Tab. 1 aufgeführten Ca<sub>I</sub>- und Ca<sub>III</sub>-Positionen sind Einlagerungen in Vierringe, mit relativ kurzen Abständen  $d_{Ca-O}$  (vgl. Tab. 2) und niedriger Koordinationszahl KZ = 6. Ca<sub>II</sub> und Ca<sub>IV</sub> besetzen die durch Fünfringe aufgespannten Hohlräume mit längeren Abständen und größerer Koordinationszahl, die in erster Sphäre mit KZ = 8 beschrieben werden kann. Die Koordinationspolyeder der kristallographischen Lagen Ca<sub>I</sub>—Ca<sub>IV</sub> sind in Abb. 3 wiedergegeben. Es ist festzustellen, daß die Koordinationssphäre unter Einbeziehung der Tetraedervierringe zu trigonal prismatischer und oktaedrischer Koordination, in den Fünfringen zu verzerrt quadratisch-antiprismatischer Umgebung für Ca<sup>2+</sup> führt.

 $Ca_3Ga_4O_9$  ist somit nicht mit den aufgefüllten Tetraedergerüststrukturen des Tridymits verwandt, sondern stellt einen eigenen Bautyp mit zweidimensionaler Netzstruktur dar. Es ist die bisher bezüglich des Metallverhältnisses Ca:Ga = 1:1,334 ( $CaGa_4O_7 = 1:4$ ;  $CaGa_2O_4 = 1:2$ ) erdalkalimetallreichste Verbindung, was sich offenbar in einer Abnahme der Ringgröße und Vernetzungsdichte äußert.

Alle Rechnungen wurden auf der elektronischen Rechenanlage (PDP 10, Fa. DIGITAL) des Rechenzentrums der Universität Kiel durchgeführt.

Der Deutschen Forschungsgemeinschaft danken wir für die Unterstützung mit wertvollen Sachmitteln.

#### Literatur

- <sup>1</sup> Jeveratnam, J., Glasser, F. P., Dent Glasser, L. S., Z. Kristallgr. Kristallgeometr. Kristallphysik Kristallchem. 118, 257 (1963).
- <sup>2</sup> Deiseroth, H.-J., Müller-Buschbaum, Hk., Z. anorg. allg. Chem. **396**, 157 (1973).
- <sup>3</sup> Deiseroth, H.-J., Müller-Buschbaum, Hk., Z. anorg. allg. Chem. **402**, 201 (1973).
- <sup>4</sup> Müller-Buschbaum, Hk., Schmachtel, W., Z. Naturforsch. 31 b, 1604 (1976).
- <sup>5</sup> Hoppe, R., Schepers, B., Naturwissenschaften 47, 376 (1960).
- <sup>6</sup> Do Dinh, C., Bertaut, E. F., Bull. Soc. Franc. Miner. Crist. 88, 413 (1965).
- <sup>7</sup> Deiseroth, H.-J., Müller-Buschbaum, Hk., J. Inorg. Nucl. Chem. 35, 3177 (1973).
- 8 Deiseroth, H.-J., Müller-Buschbaum, Hk., Z. anorg. allg. Chem. 382, 149 (1971).
- Deiseroth, H.-J., Müller-Buschbaum, Hk., Z. anorg. allg. Chem. 387, 154 (1972).
- <sup>10</sup> Schweizer, M., Müller-Buschbaum, Hk., Z. Naturforsch. 34b, 1067 (1979).
- <sup>11</sup> Arpe, R., Schenck, R. v., Müller-Buschbaum, Hk., Z. anorg. allg. Chem. 410, 97 (1974).
- <sup>12</sup> Schulze, A.-R., Müller-Buschbaum, Hk., Z. anorg. allg. Chem. 461, 48 (1980).
  - 11 Monatshefte für Chemie, Vol. 112/2

- <sup>13</sup> Brauer, G., Kirsten, H., Z. anorg. allg. Chem. 462, 35 (1980).
- <sup>14</sup> Schulze, A.-R., Müller-Buschbaum, Hk., Z. anorg. allg. Chem., im Druck.
- <sup>15</sup> Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P., Woolfson, M. M., MULTAN 78, Computer Programmes for Automatic Solution of Crystal Structures, University of York 1978.
- <sup>16</sup> Sheldrick, G. M., SHELX 76, Programme System for Crystal Structure Determination, University of Cambridge 1976.
- <sup>17</sup> Schulze, A.-R., geplante Dissertation, Kiel 1981.
- <sup>18</sup> Johnson, C. K., ORTEP, Report ORNL-3794 Oak Ridge National Laboratory, Oak Ridge, Tennessee 1965.

156